
Connections Solver:
A Semantic Word Categorization Model

Arunima Gupta: gupta.aru@northeastern.edu
Yulan Wang: wang.yula@northeastern.edu

Yuliya Buturlia: buturlia.y@northeastern.edu
Yash Jayaprakash: j.y@northeastern.edu

Abstract

The popular New York Times game Connections
tests a player’s ability to group words into
categories on the basis of semantic similarity
between words. Players are presented with a grid
of sixteen words with the objective of assembling
them into four overarching categories with four
words each. Using a Hidden Markov Model, the
Viterbi Algorithm, and word-vector comparisons,
we attempt to construct a model that can assign
each word of a given grid to a category, utilizing
semantic similarity between words and categories.
We coin this as a ”twist” on the New York Times
Connections game.

1 Introduction

Second only to Wordle, Connections is one of New
York Times’ most played online word games. To win,
players must categorize each word from a four by four
grid containing sixteen words into the correct category,
resulting in four distinct groups with four words each,
within the overarching limit of four errors. A typical game
of Connections varies in complexity for its groupings,
beginning at basic similarities (e.g. suffixes or prefixes)
and occasionally ending in non-semantic groupings that
rely on a form of abstract deduction to create the category
(e.g. the category ”One in a Dozen” which consisted of
egg, juror, month, and rose).

Previous experiments have been conducted to verify
the capability of modern Natural Language Processing
systems to solve Connections. In a study presented at the
IEEE 2024 Conference on Games, two approaches were
explored: Large Language Models (LLMs) from OpenAI,
namely GPT-3.5 and GPT-4, and sentence embedding
models such as BERT, RoBERTa, MPNet, and MiniLM.
Results revealed that GPT-4-TURBO had the high correct
matching rate at 29.2%, outperforming GPT-3.5-TURBO
with 6.43% success and the best sentence embedding
model MPNET with 11.6% success. Notably, correct
initial guesses were strongly correlated with higher success
rates, while incorrect or nearly correct first guesses often
led to failure [Tod24].

For our approach, we decided to focus on semantic
similarity in the Connections game. To remain in the
scope of the project, we altered the Connections game
to focus on matching words to categories, as opposed
to words matched to other words based on semantic
similarity. We also eliminated error tolerance, relying only
on first guesses as the final decision. With this alteration,
it became clear that our approach would be most optimal
when relying on a Hidden Markov Model [Seg97] that
utilized Word2Vec to analyze semantic similarity [Jat19].
The categories are not directly observable to the agent,
and the agent needs a way to go from one category to
the next, so a Hidden Markov Model has the necessary
components to properly represent the game.

2 Methods

For each word given to our model, we begin by applying
Word2Vec to obtain the embedding vector. This is then
utilized to calculate the cosine similarity between this
vector and the vector of each given category. These
similarities are preprocessed and stored in an emission
matrix to represent the likelihood of each observation
being associated with a state(category). For each state,
the similarity scores are normalized so that they add
up to 1 across all observations for this particular state.
We do this by taking the cosine similarity between
a word and category and dividing it by the sum of
cosine similarities between all other observations and
categories. For example if calculating the emission value
for P (”Strawberry”|”Fruit”), we would take the cosine
similarity between strawberry and fruit and divide it by
the cosine similarity between ”Basketball” and ”Fruit”,
”Winter” and ”Fruit”, etc. This ensures that each row
of the emission matrix corresponds to a valid probability
distribution; in the emission matrix, (number of states ×
number of observations), each entry E[i, j] corresponds
to the probability of observation j being associated with
state i.

Next, we calculate a transmission matrix to represent
the probability of transitioning from one state to another.
Unlike the emission matrix, this is a (number of states
× number of states) matrix where each element T [i, j]
refers to the probability of transitioning from state i
to state j. Initially, we attempted to utilize a 16 × 16
matrix that mapped probabilities of going from one state
(ex. Fruit1) to another state (Season1). This was so
that each observation would easily have one end state
so we could easily enforce the constraint of four words
for every category, internally. However, we arrived to
the conclusion that representing the states as Fruit1,
Fruit2, Fruit3, Fruit4, etc, limited the capabilities of our
model. We would not be able to effectively represent
if a state was already filled in our transition matrix,
without updating our matrix. We even thought about
representing the multiple states our game could take in
matrix form. We thought we could take a 1 × 4 array
and use it to represent the number of slots filled for each
category. For example if our categories were ”fruit”,
”cuisine”, ”sport”, and ”cuisine”, and we just classified a
”strawberry” as a ”fruit” we could represent this with an
array such as [1, 0, 0, 0]. If each index of the array can
go to a maximum of 4, that would imply 44 or 256 game
states. Meaning we would have a 256 by 256 transition
matrix. This would make things quite complicated and
it was not clear how we could easily use this with the
our Viterbi algorithm implementation. So for the sake of
simplicity, in our final solution, we kept a uniform 4 × 4
transition matrix and assigned each transition probability
to one divided by the number of states to ensure an
equal probability of transitioning between states. With
four categories, the probability is 1

4 for each element T [i, j].

Having calculated the emission and transition proba-
bility matrices, all fundamental components of a Hidden
Markov Model (HMM) are now satisfied: the initial
distribution P (X1) represented by the observations array,
the transition probabilities P (X1) represented by the
transition matrix, and the emission probabilities P (Ot|Xt)

represented by the emission matrix. Notably, HMMs
operate under two integral Markov assumptions, the
first of which, Temporal Dependency, holds that future
states are dependent exclusively on the present state,
or the probability distribution of the next state is only
dependent on the current state. This assumption is held
true, as the probability of matching the next category
depends only on the current game state in terms of
available words to match and number of categories that
can still be filled. The second assumption, Observational
Independence, holds that the observation at any given
step is independent of all previous and future observations
and states, with the exception of the current state. The
observations are calculated by calculating the cosine
similarity of the Word2Vec vector representations of each
word and potential category, so they are not dependent on
any particular observation or state in neither the future
or the past.

To find the appropriate state (category) for each obser-
vation (word), we apply a modified Viterbi Algorithm, ex-
tracting the most likely hidden-state sequence. Following
the trellis equation for the Viterbi algorithm,

δt(Si) =
N

max
j=1

[
δt−1(Sj)P (Si|Sj)P (ot|Si)

]
(1)

with base case

δ1(Si) = π(Si)P (o1|Si) (2)

and final probability

P (q) =
N

max
i=1

δT (Si) (3)

where q is the most likely hidden state sequence after T
time-steps [Ven24].

Following these formulas as a baseline, we formulated
the algorithm to take the maximum of all probabilities at
each iteration to find the most probable sequence of states.
Additionally, backtracking guarantees that the best global
solution, beyond simply local, is found. Our final catego-
rization strategy is summarized in Algorithm 1.

Algorithm 1 Viterbi Algorithm with Constraints

Input: Observations, States, Emission Matrix, Transition
Matrix

Output: Best State Sequence

Initialization:
Create DP table dp of size (n states ×
n observations)

Create Backpointer table backpointer of the same size

foreach state s in States do
dp[s][0] ← 1

n states · Emission Matrix[s][0]

backpointer[s][0] ← −1

Recursion:
foreach time step t from 1 to n observations - 1 do

foreach state s in States do
probabilities ← []
foreach prev state ps in States do

probabilities.append(dp[ps][t-1]

× Transition Matrix[ps][s]

× Emission Matrix[s][t])

dp[s][t] ← max(probabilities)
backpointer[s][t] ← argmax(probabilities)

Backtracking:
best state sequence ← []
best state ← argmax(dp[:, -1])
best state sequence.append(best state)

foreach time step t in reverse order from n observations

- 1 to 0 do
best state ← backpointer[best state][t]

best state sequence.append(best state)

Return reversed(best state sequence)

3 Data and Experiments

3.1 Data Source

Our primary source of data is contained in ”word2vec-
google-news-300”. This particular model contains pre-
trained vectors trained on the Google News dataset of
about one hundred billion words. The model has 300-
dimensional vectors for three million words, as well as
phrases. For each necessary word and category, we ex-
tracted the associated vector from this model.

3.2 Experiments

3.2.1 Semantic Similarity

To test the base capabilities of the model, sorting com-
mon words by semantic similarity to the category options,
we used seven potential categories, fruits, clothing, colors,
sports, flowers, shapes, and cuisines, each with twenty as-
sociated words. For example, fruits were represented as
such:

fruits = [”blueberry”, ”strawberry”, ”kiwi”, ”apple”,
”banana”, ”orange”, ”mango”, ”grape”, ”pineapple”,
”watermelon”, ”papaya”, ”cherry”, ”peach”, ”pear”,

”plum”, ”guava”, ”lychee”, ”fig”, ”apricot”,
”dragonfruit”]

For each of 10,000 trials, four categories of the provided
seven were randomly selected. For each chosen category,
four of the twenty available words were selected randomly
to create the required sixteen word Connections-like grid.
For each, it was ensured that each category and word were
unique, modeling after the Connections game. After cal-
culating the appropriate emission and transition matrices,
our algorithm was then run on each generated grouping of
observations, states, emission matrix, and transition ma-
trix. The accuracy of the model was calculated with the
following equation on each iteration, obtaining the num-
ber of correctly categorized words by checking if the given
state for each word in the best path given by the model
truly contained this word in its previously defined array.

Accuracy =
correctly categorized words

16
× 100 (4)

3.2.2 Homonyms

Having confirmed a degree of accuracy for simple word to
category semantic analysis for the model, we shifted focus
to more ambiguous and complicated categories and word
options. One such test included the following two cate-
gories and potential corresponding sixteen words with the
purpose of testing the model’s accuracy with homonyms.

tree = [”palm”, ”limb”, ”trunk”, ”crown”,
”heart”, ”veins”, ”skin”, ”roots”,
”branch”, ”sap”, ”knot”, ”leaf”,
”ring”, ”bark”, ”shoot”, ”stem”,

”canopy”, ”twig”, ”seed”, ”flower”]
human = [”head”, ”arm”, ”leg”, ”torso”,

”hand”, ”foot”, ”eye”, ”ear”,
”nose”, ”mouth”, ”heart”, ”lungs”,
”skin”, ”brain”, ”stomach”, ”bones”,
”fingers”, ”toes”, ”hair”, ”teeth”]

Each word within the human category can have an in-
terpretation that places it in the tree category. These ex-
amples are modeled in Table 1 below.

To test the model’s capability to correctly categorize
with metaphors and homonyms, we ran three trials. The
first used the tree category in each of the 10,000 trials
along with 3 other random categories, excluding human.
The second trial used the human category in each of the
10,000 trials with three other random categories as well,
excluding tree. Finally, we ran the third trial with both
the tree and human categories with two additional random
categories.

3.2.3 Connotations and Emotions

Finally, we tested the model’s ability to differentiate words
with various connotations from both each other and from
other simple words. To do so, five additional categories
were created: positive, negative, weather, virtues, and
flaws. Additionally, color was also considered a cate-
gory with connotation due to its common use in figura-
tive language. The positive category contained twenty
words with positive emotions, such as ”peace”, ”grati-
tude”, ”comfort”, and ”delight”, while the negative con-
tained the opposite with words such as ”envy”, ”anxiety”,
”frustration”, and ”dread”. Weather contained common
weather phenomena, such as ”storm”, ”hail”, ”hurricane”,

Homonyms Between Body and Tree
Word Human Interpreta-

tion
Tree Interpretation

Palm inner part of the
hand

tropical tree

Limb arm or a leg large branch
Trunk torso main woody stem of

a tree
Crown top part of the head upper part of a tree
Heart organ that pumps

blood
central part of a
trunk

Veins blood vessels vascular structures
in leaves

Skin outer layer of the
body.

bark

Roots metaphorically
refers to ancestry

underground part
of the tree

Branch metaphorically,
nervous system or
family tree

limb growing from
the trunk

Sap metaphorically, en-
ergy or vitality

fluid in the vascular
system

Table 1: Homonyms Between Body and Tree

and ”sunshine”. Virtues and flaws were identically format-
ted with words akin to ”wisdom”, ”honesty”, ”integrity”,
and ”loyalty”, and ”dishonesty”, ”laziness”, ”impatience”,
and ”cruelty”, respectively.

Using these new connotation-imbued words and cate-
gories, we ran five trials. One trial with 10,000 iterations
was a control with four randomly chosen simple categories
as used previously and no words from the newly defined
connotation list. The following progressively reduced the
number of simple categories randomly chosen while in-
creasing the number of randomly chosen categories with
clear connotations, while holding all other parts of the tri-
als constant. Thus, we ran a trial with 3 simple and 1 with
connotation, 2 simple and 2 with connotation, 1 simple and
3 with connotation, and 0 simple and 4 with connotation,
and we analyzed the results.

4 Results

For the simple collection of seven categories with four
randomized categories and sixteen randomized words
over 10,000 trials, the model matched the word to the
correct category 91.439% of the time, as visualized by the
following Figure 1 depicting the percentage of correctly
classified words for each randomized trial.

Figure 1: Percentage of correctly categorized words over
10,000 trials.

We then explored the trials in homonyms as previously
outlined, starting with 10,000 trials for three random cate-
gories, with the exception of the human category, and the
tree category. This resulted in an accuracy of 84.317% as
visualized in Figure 2.

Figure 2: Percentage of correctly categorized words over
10,000 trials, with tree and three randomly selected cate-
gories.

This was continued with isolating the human category
with 10,000 trials for three random categories, with the
exception of the tree category, and the human category,
resulting in an accuracy of 88.339% as visualized in Figure
3 below.

Figure 3: Percentage of correctly categorized words over
10,000 trials, with human and three randomly selected cat-
egories.

Finally, we combined the aforementioned categories to
explore the model’s capability of differentiating between

the tree and human words, which resulted in an overall
accuracy of 79.534%, as visualized below in Figure 4. This
shows a decrease in the model’s ability to differentiate
between categories, and thus unveils a weakness when it
comes to homonyms and more complex, ambiguous words.
At nearly 80%, this categorization is still fairly successful,
and thus does not significantly retract from the efficacy of
the model.

Figure 4: Percentage of correctly categorized words over
10,000 trials, with human, tree, and two randomly selected
categories.

Finally, we explored the model’s capability to interpret
connotation, using it to classify words. Using the previ-
ously developed experiments with 10,000 trials for each
variation, we obtained the following results in Table 2.

Percent Correct Dependent on Connotation Categories
Simple Cate-
gories

Connotation
Categories

Percent Correctly
Classified Words

4 0 91.47625
3 1 91.806875
2 2 89.643125
1 3 86.1175
0 4 81.37125

Table 2: Percent of Words Classified Correctly for Each
Variation of Number of Connotation Categories

To show the percentage of correctly classified words for
each category for each individual trial, the graphs below,
Figures 5, 6, 7, 8, 9, visualize these points for each varia-
tion in trials. We can observe that the percentage of cor-
rectly classified words decreases with the addition of cate-
gories with notable connotational similarities, with the ex-
ception of the trials with three simple categories and one
connotation category. This trial had greater accuracy than
four simple by a very minimal amount, which could be at-
tributed to the scope of our categories and variety in word
options for each trial.

Figure 5: Percentage of correctly categorized words over
10,000 trials with only simple categories for control.

Figure 6: Percentage of correctly categorized words over
10,000 trials with 3 simple categories and 1 with strong
connotation.

Figure 7: Percentage of correctly categorized words over
10,000 trials with 2 simple categories and 2 with strong
connotations.

Figure 8: Percentage of correctly categorized words over
10,000 trials with 1 simple categories and 3 with strong
connotations.

Figure 9: Percentage of correctly categorized words over
10,000 trials with no simple categories and 4 with strong
connotations.

5 Conclusion

We find that our model demonstrates a promising approach
to solving a modified Connections game by leveraging se-
mantic similarity through Word2Vec embeddings and a
Hidden Markov Model with a modified Viterbi Algorithm.
The model has a notably high accuracy in classifying words
to categories based on semantic similarity at around 91% of
tested words categorized correctly and a fairly high accu-
racy with more complex word groupings with around 80%
of words categorized correctly. We assert that Word2Vec
embeddings provide reliable calculations for emission prob-
abilities for word-category classification. Additionally, a
Hidden Markov Model coupled with the Viterbi Algorithm
is highly effective for sequential categorization, despite sce-
narios when the given observations involve ambiguity or
overlapping meanings, as shown with homonyms. While
the model performs well on homonyms as a whole, accu-
racy declines when numerous categories contain semanti-
cally or morphologically overlapping terms, suggesting ar-
eas for improvement. Additionally, analysis on semantic
similarity on the basis of connotation demonstrates a sat-
isfactory level of preliminary success. Future work could
include expanding to support non-semantic categories that
rely on abstract or lateral reasoning, making the grid of
words more similar to possible Connections boards, as well
as runtime and accuracy improvements.

6 Link to GitHub Repo

https://github.com/arunimag23/aiproject2024

7 Team Contributions Statement

Arunima: emission and transition matrix logic, reworking
word2vec, read me, presentation slides (Game Set Up and
HMM), methods section contributions for report, project
management.
Yulan: Verterbi algorithm, game GUI set up, presentation
slides (Viterbi algorithm and To Dos), final model fixes.
Yash: Viterbi Algorithm, transition/emissions matrices,
refining GUI, incorporating the final model into the GUI,
demo video.
Yuliya: testing/trial and graph creation, refining algorithm
for ambiguous categories, final report.

References

[Tod24] G. Todd, T. Merino, S. Earle, and J. Togelius.
Missed connections: Lateral thinking puzzles for
large language models. arXiv:2404.11730, 2024.

[Jat19] D. Jatnika, M. Bijaksana, and A. Ardiyanti.
Word2Vec model analysis for semantic sim-
ilarities in English words. Procedia Com-
puter Science, vol. 157, pp. 160–167, 2019.
doi:10.1016/j.procs.2019.08.153.

[Seg97] F. Segond, A. Schiller, G. Grefenstette, and J.-
P. Chanod. An experiment in semantic tagging
using hidden Markov model tagging. Proceedings
of Automatic Information Extraction and Build-
ing of Lexical Semantic Resources for NLP Appli-
cations, 1997.

[Ven24] R. Venkat. Hidden Markov Models. AI Resources,
2024. Available at: https://rajagopalvenkat.

com/teaching/resources/AI/ch6.html#hmm.

https://github.com/arunimag23/aiproject2024
https://rajagopalvenkat.com/teaching/resources/AI/ch6.html#hmm
https://rajagopalvenkat.com/teaching/resources/AI/ch6.html#hmm

	Introduction
	Methods
	Data and Experiments
	Data Source
	Experiments
	Semantic Similarity
	Homonyms
	Connotations and Emotions

	Results
	Conclusion
	Link to GitHub Repo
	Team Contributions Statement

